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PRIMAL-DUAL METHODS FOR
LINEAR PROGRAMMING*

Philip E. GILLt Walter MURRAY$
Dulce B. PONCELE6N§ and Michael A. SAUNDERS t

Technical Report SOL 91-31
May 1991

Abstract

Many interior-point methods for linear programming are based on the prop-
erties of the logarithmic barrier function. We first give a convergence proof for
the (primal) projected Newton barrier method. We then analyze three types
of barrier method that can be categorized as primal, dual and primal-dual. All
three approaches may be derived from the application of Newton's method to
different variants of the same system of nonlinear equations. A fourth variant
of the same equations leads to a new primal-dual algorithm.

In each of the methods discussed, convergence is demonstrated without the
need for a nondegeneracy assumption. In particular, convergence is established
for a primal-dual algorithm that allows a different step in the primal and dual
variables.

Finally, we describe a new method for treating free variables.

Keywords: linear programming, barrier methods, interior-point methods.

1. Introduction

For the most part we consider linear programs in the following standard form:

minimize cTx

subject to Ax = b, x > O,

where A is an m x n matrix wi-h m < n. We focus on interior-point/barrier methods
to solve (1.1).
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2 Primal-dual methods for linear programming

Initially we prove convergence for a primal barrier algorithm in which the iter-
ates are assumed to satisfy Ax = b, but our main interest is in primal-dual algo-
rithms that make as few assumptions as possible about the initial approximation
to variables, and do not require a transformation of (1.1) into some mathematically
equivalent linear program. We also allow liberal control of the barrier parameter.

A number of authors have described primal-dual algorithms that converge in
polynomial time (see, e.g., Kojima, Mizuno and Yoshise [KMY89]; Monteiro and
Adler [MA89]). However, such algorithms are generally theoretical and differ from
the relatively few primal-dual algorithms that have been implemented for practical
problems (see, e.g., McShane, Monma and Shanno [MMS89I, Lustig, Marsten and
Shanno [LMS89,LMS90], Mehrotra [Meh9O], and Gill et al. [GMPS91]). Two key
differences are the assumption that the step taken in the primal and dual spaces are
the same and that the initial estimate of the solution is primal and dual feasible.
It may be argued that the feasibility assumption is not overly restrictive because
the linear program can be transformed into another problem with an identical so-
lution, but a known feasible point. However, this ignores the possibility that the
transformed problem may be more difficult to solve than the original.

Recently, Kojima, Megiddo and Mizuno [KMM90 have analyzed a primal-dual
algorithm that is more similar to implemented algorithms. They define a steplength
rule that allows (but does not guarantee) the possibility of different steps in the
primal and dual spaces. They assume that the initial point is feasible.

The principal algorithms considered here do not require feasible iterates, and
different steps may always be taken in the primal and dual spaces. These algorithms
may be loosely categorized as primal, dual or primal-dual in order to distinguish
between the different approaches. Itowe-;i, all of them are primal-dual in the sense
that this term has been used for interior-point methods.

It is not within the scope of this paper to provide a numerical comparison of
the different methods. Our intention is to give the methods a common setting and
thereby highlight their similarities and differences. Our main purpose is to define
and analyze implementable algorithms. For the purposes of analysis, it is necessary
to include some procedures that are not present in standard implementations-
the most notable of these being the definition of the steplength as the result of a
linesearch instead of as a fixed fraction of the largest feasible step. However, the
proposed linesearches are simple to implement and do not add significantly to the
cost of an iteration. Moreover, the traditional "fixed" steplength usually satisfies
the linesearch criteria. The proofs of convergence demonstrate that almost any step
can be taken in the dual space. The existence of a wide range of steps for which
convergence occurs may be the reason for the robustness of algorithms that do not
incorporate a. linesearch.

All the properties discussed apply to more general methods for problems in which
some variables have upper bounds or are free. However, if the linear systems arising
in the methods are solved using certain Schur complements, free variables become
troublesome. In Section 8 we describe a new technique for the treatment of free
variables.

The analysis presented here is applied only to linear programming. It has been
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shown by Poncele6n [Pon9O] that it may be generalized to indefinite quadratic pro-
grams.

1.1. Notation and Assumptions

Let x* denote a solution to (1.1) and let X* be the set of all solutions. Throughout
we make the following assumptions:

(i) the constraint matrix A has full row rank;

(ii) the feasible region So = {x I Ax = b, x > C} is compact; and

(iii) a strictly feasible point exists, i.e. there exists at least one point x such that
Ax = b and x > 0.

We shall use N to denote the matrix whose columns form a basis for the null space
of A (thus AN = 0). Occasionally it will be necessary to refer to the i-th element of
a sequence of vectors {xi} and the j-th component yj of a vector y. To distinguish
between x, and y, we shall use i to denote the i-th member of a sequence of vectors,
and j to denote the j-th component of a vector. Unless otherwise stated, 11' -1 refers
to the vector two-norm or its induced matrix norm. The vector e denotes the vector
(1, 1, ... ,

2. Primal Barrier Methods

Barrier methods for linear programming generate approximations to both the primal
and dual variables at each iteration. We shall use the term primal method to refer
to a method that generates strictly positive values of the primal variables x, but
does not restrict the values of the dual slack variables z. In the first algorithm we
assume that the primal variables are feasible, i.e., that Ax = b. This assumption is
relaxed for the remaining algorithms.

2.1. The Primal Barrier Subproblem

Barrier methods involve major and minor iterations. Each major iteration is asso-
ciated with an element of a decreasing positive sequence of barrier parameters {Ilk)
such that limk-.o, ik = 0. The minor iterations correspond to an iterative process
for the solution of the subproblem

minimize B(x, t) cTx - L in 2(3xE" (2.1)

subject to Ax = b,

which is solved at every major iteration, i.e., for each value of it = ilk. Since
B(x,jt) is a strictly convex function, there exists a unique minimizer x*(It) such
that Ax*(Li) = b and x*(il) > 0.

Barrier methods are based on the fundamental result that lini,_0 x*(t) E X*.
For a proof of this result and a general discussion of barrier methods, see Fiacco
and McCormick [FM68].
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'Xw The special form of the derivatives of the barrier function makes Newton's
method a natural choice for solving problem (2.1). At any given point x, New-
ton's method defines a search direction Ax such that x + Ax continues to satisfy the
linear constraints and minimizes a quadratic approximation to the barrier function.
The vector Ax is the solution of the quadratic program

minimize 1AxTH Ax + gTAxzAx

subject to AAx = 0,

where g(x,it) = c - LX-'e and H(x,it) = IX - 2 are VB(x, i) and V2B(x,M), the
gradient and Hessian of the barrier function, with X = diag(xi). If y denotes the
Lagrange multiplier vector a. x associated with the constraints Ax = b, the updated
multipliers y + Ay at x + Ax satisfy

I,-( Ax) -g+ ATy where K H AT (2.2)-Ay 0 A

We shall refer to this system of equations as the KKT system and to the matrix K
as the KKT matrix.

2.2. The Projected Newton Barrier Method

The formulation of the barrier subproblem (2.1) and the calculation of x*(/Z) by
Newton's method was first embodied in the projected Newton barrier method of Gill
et al. [GMSTW86]. The method requires the specification of two positive sequences:
a bounded sequence {'fk} that determines the accuracy of the solutions of (2.1) and

a decreasing sequence of barrier parameters {Lkl such that limk.-. Ilk = 0.

Algorithm PFP (Model Primal Feasible-Point Algorithm)

Compute xO such that Axo = b, xo > 0;
Set k = 0, i = 0 and ik = 0;
while not converged do

Set t = Ak;
while IINTg(xi,A)I > 60j do

Find xi+i such that

B(xi+1,1t) < B(xi,p), xi+1 > 0 and Axi+x b;
Set i = i + 1;

end do;
Set k = k + 1, ik = i;

cnd do

Each member of the subsequence {xiJ, corresponds to an approximate minimizer
of the subproblem (2.1) defined by Pk. We shall refer to the consecutive indices of
the sequence of minor iterations ik-1, ik-1 + 1, ... , ik as I.

Since limk--* Ilk = 0, it follows that limk...o IJXi, - 411l = 0, where x is the
nearest point to xik in X*. The main difficulty lies in generating the sequence of
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minor iterates {Ci, i E "k} so that the condition IINTg(xz,,)j < bkAk is eventually
satisfied. This issue is addressed in the next section.

The precise form of the termination condition for the minor iterations is not
crucial. The only requirement is that the condition be satisfied in a neighborhood
of X*(/Ak) that shrinks to the point x*(,zk) as k -+ 0o.

2.3. Convergence for the Primal Subproblem

In this section we show that the sequence {Xi, i = ik-1 ... } generated by Newton's
method with bk = 0 converges to x*(/'k). It follows that for 6k > 0 the number of
minor iterations required to satisfy the termination condition is finite.

Throughout this section we shall use the notation

A = Ik, B(x) = B(x, p), g(x) = g(xq), H(x) = Ht(x, p),

to refer to quantities asociated with the k-th subproblem.
The feasible set So is compact by assumption. Given a positive constant 0 and

a feasible vector w such that u > 0e, let 12(w, p) denote the level set

Q(w,ji) = {x I B(x) < B(w)}.

We have in mind w being the first minor iterate xik-l associated with A and 0 being
the smallest component of w. Every subsequent minor iterate will lie in the set
So n S(wp).

The essential element of the proof is the demonstration that the KKT matrix is
bounded and has a bounded condition number at every point in the set

S = So n fl(w,,).

By assumption, A is bounded and has a bounded condition number. It follows
that K will also have this property if H is bounded and has a bounded condition
number. The latter properties in fi follow from the following lemma, which shows
that {(x,)j} is bounded above a1i bounded away from zero.

Lemma 2.1. Let 0 be a positive constant, and let w be a given vector such that
w > Oe and Aw = b. There exist positive constants ox and Tx, independent of x,
such that axe < x < rxe,

Proof. The set S is compact since it is the intersection of the two closed sets So
and f2, and it is a subset of the bounded set So. Since S is compact, there exists a
constant Tx such that x, < Tx. The definition of S implies that every x E S gives
B(x) < B(w). It follows that for all x E 5,

n n

cTX _, Eln <cIV - / lnw,.
j=l =

Therefore for each j,

n

-Itnx <c~- z ln=1 c Tx ln
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Since S is compact, the quantities w = max{Ic TX I x E 9}. and 1 = max{lnxj I x E
S} are bounded. Similarly, if 0 > 0, constant 3 = max{3, - In 0} is also bounded,
and -It In xi 5 2w + 2npo3, or equivalently,

xj > e - 2(+w/M) > 0,

as required. I

Corollary 2.1. Let x be any element of S. Let H(x) = pX -2 where X = diag(xj).
Then there exist positive constants or and rH, independent of x, such that for all
vectors u,

adlluI 2 < uTH(x)u < rllUjj2. *

Lemma 2.2. At every element of the sequence {xi, i E Tk} of Algorithm PFP, the
matrix K is bounded and has a bounded condition number. I

We now show that the sequence {xi} generated by Newton's method converges
to x*(,I), which implies that the condition JINTg(xj)J1 _ 411 will be satisfied in a
finite number of iterations.

The iterates of the projected Newton barrier method satisfy xi+i = xi + ai.Axi,
where the search direction Ax, is defined by (2.2). The steplength ai is determined
from a linesearch, which locates a steplength that gives a sufficient decrease in B(x).
Throughout we shall use the Goldstein-Armijo conditions to define the steplength,
although any of the standard steplength criteria would be suitable (see, e.g., Ortega
and Rheinboldt [OR70]). For minimizing B(x), the Goldstein-Armijo conditions are

r1OtiAXTg(xi) < B(xi + aiAxi) - B(xi) : rj2oaiAxTg(xi), (2.3)

where 0 < rn : 77 <1.

Theorem 2.1. Let {xi} be the sequence generated by Newton's method applied to
the problem (2.1). Then lim II x - x*(p)Il = 0.

Proof. Since a strictly feasible minimizer of the barrier function exists along Ax,,
theie must exist a positive step a, such that xi + aiAxi is a strictly feasible point
and the Goldstein-Armijo conditions are satisfied. Consequently, B(xi+l) < B(xi).
Since xi E S and S is compact, it follows that B(xi) is bounded below and

lim {B(xi+1 ) - B(xi)} = 0. (2.4)

Let H(x) denote the Hessian matrix of B(x). Since xi E 9, the corollary to
Lemma 2.1 implies that there exists a positive constant au such that

,AXTtI(Xi)Axi > 11A~ll'l .  (2.5)

From (2.2) we have
AxTH(x)Ax - -Axig(xi).
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Combining this identity with (2.5) and the second Goldstein-Armijo inequality (2.3)
gives

B(x,) - B(xi+l) _ -2aiAxTh(Xi) _ Tna.IIlxiAi 2,

which implies that JIMi., AxII 2 - 0 from (2.4).

The Taylor-series expansion of B(xi + aiAxi) gives

B(xi+I) = B(x,) + cAxTg(x,) + la?,xTH(i,),,

where ii = xi + OaiAxi for some 0 < 0 < 1. Using this expansion in the first
Goldstein-Armijo inequality (2.3) gives

aiAxTg(xi) + iaAxTiH(i)LAxi _ 7ji YAxTg(xi),

and since Axjg(xi) < 0, we have

IAxTg(xi), - 2(1 - )AXTH(it)Ax. (2.6)

Since S is convex, ii E S and it follows from the corollary to Lemma 2.1 that there

exists a constant r such that

AXTJI(l,)Ax, < T IIAd 12 .

Combining this inequality with (2.6) gives

I'AXg(X)I 5 ai lAXjT11(i)AX i < rn~ iII

2(1 - 2(1)- w71 lAx) ll1'

Since lim., a, IIAjiI12 = 0, we obtain

jim AXTg(Xj) = 0. (2.7)

From (2.2) we have

NTH(x,)NAzx, = - NTg(x,), (2.8)

where Axi = NAxN. Since NTII(xi)N is bounded and has a bounded condition

number, it follows from (2.7) and (2.8) that l Axi = 0 and limi-. NTY(X,) =
0. Since x*(,z) is the unique feasible point for which NTg(x*(,I)) = 0, we have

lirn_, Hlxi - X(*L)lI = 0 as required. I

3. Getting Feasible

There are various ways to eliminate the requirement of Algorithm PFP that an
initial strictly feasible point be known.
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3.1. An Artificial Variable

A common approach is to introduce an additional variable, or set of variables, and
minimize a composite objective function. For example, given xo > 0, consider the
transformed problem

minimize cTx + pxE3?n , tER

subject to Ax + u = b, x > 0, > -1,

where u = (b - Axo)/llb - Axoll and p is a positive scalar. The initial value of
is lib - Axoll, so a strictly feasible point for the transformed problem is known. If
a step would make negative during an iteration, a shorter step is taken to make

= 0. Once is zero, it is eliminated from the problem.
The difficulty with this and similar approaches lies in choosing the value for the

parameter p. Although p must be sufficiently large, if it is chosen too large, the
infeasibilities dominate the objective function and the method behaves like a two-
phase algorithm. If no strictly feasible point exists, the efficiency of the algorithm
can depend critically on the choice of p.

3.2. A Merit Function

The method of Section 2.1 may be generalized so that Ax is the solution of the
quadratic program

minimize !AxTHAx + gTAx

subject to AAx = b - Ax

and satisfies ) A - g - AT,) (3.1)

We may then introduce a merit function that balances the aims of minimizing
B(x, y) and reducing some norm of Ax - b. For example, one possible merit function
is

M(x,p) = B(x, y) + pllAx - bill,
where p is chosen suitably large. It can be shown that if Ax is defined by (3.1) then
it is a descent direction for M(x, p) (see Section 7). We may prove convergence in a
manner similar to that for the feasible-point algorithm. It may be thought that this
approach also depends on choosing a "good" value for the parameter p. However, p
affects only the steplength and not the direction of search. Moreover, it is relatively
trivial to adjust p dynamically. We can take the step we would like to take and
then check whether a suitable value of p exists for which the linesearch criteria are
satisfied.

We shall not pursue this approach with respect to primal barrier algorithms,
since we think a better approach is outlined in the next section. However, we shall
return to this merit function when we discuss a primal-dual method in Section 7.
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3.3. Newton's Method Applied to the Optimality Conditions

Since B(x,ji) is strictly convex, x*(It) is the only strictly feasible constrained sta-
tionary point for problem (2.1). Therefore, an alternative method for finding x*(A)
is to use Newton's method for nonlinear equations to find the stationary point of the
Lagrangian function L(x, y) = B(x,tt) - yT(Ax - b). Since the gradient of L(x, y)
is zero at x*(p), we obtain the n + m nonlinear equations

VL(x'Y)= (c - eAx-b ) = 0, (3.2)

whose Jacobian is closely related to the KKT matrix K. The solution of the KKT
system (3.1) is a descent direction for IIVLII, and a steplength may be chosen to
achieve a sufficient reduction in IIVLII. As in Algorithm PFP, this merit function
ensures that x. cannot be arbitrarily close to its bound.

We now extend this approach to obtain the principal algorithms of interest in
this paper.

4. A Primal Primal-Dual Method

Following common practice, we introduce a third vector of variables z = c - ATy.
We now wish to solve the nonlinear equations fp(z, x, y) = 0, where) z - jXl

fp(z,x,y) - = - ATy - z (4.1)
• Ax - b

When it is necessary to consider the full vector of variables z, x and y, the vector v
will denote the (2n + m)-vector (z, x, -y). The symbols fp(z,x,y) and fp(v) will
be used interchangeably for fp, depending on the point of emphasis. The Newton
direction Av = (Az, Ax, -,Ay) satisfies the linear system

I uzX- ' 0

JPAv = -f,, where J = -1 0 AT (4.2)
0 A 0

Apart from the last block of columns being multiplied by -1, Jp is the Jacobian of
the nonlinear equations (4.1). We shall refer to Jp as the Jacobian.

The directions .Ax and Ay from (4.2) are identical to those (efined by the K NT
system (3.1), and to those associated with (3.2). However, for the nonlinear equa-
tions VL(x,y) = 0 and fpz,x,y) = 0, the steplength is chosen to produce a suffi-
cient decrease in 11VLI 2 and IfPr[ 2 respectively. In the latter case, the Goldstein-
Armijo conditions give the following conditions on a,:

0 < -2q 2ai/AvTJPfp(V,) _ IIfP(v,)12 - IIfp(v,+1)I 2 < -2?liaz.v'Tfp(v,).
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Since JAv = -fp(vi), these conditions can be restated in the equivalent form

0 < 2r,2ai _ 1 - I1fP(vi+i)I' < 21llai,

IIfp(vi)11
2

which is easily tested.
Since the residuals j and r are linear in x, y and z, they are simply related to

their values in the previous iteration. Suppose that r and f are nonzero at iteration
i. After a step of Newton's method with steplength ai, we have

r+ = (1 - ai)ri and fi+i = (1 - ai)fi. (4.3)

At the first iteration !lzoll and 111o are bounded and xo is bounded away from zero,
which implies that the Jacobian is bounded and has a bounded condition number.
It follows that ao > 0. Hence the relations (4.3) imply that ri = 7ito for some scalar
7i such that 0 < -i < 1. If a unit step is taken at any iteration, f and r will be zero
for all subsequent iterations.

The complete algorithm is as follows.

Algorithm PPD (Model Primal Primal-Dual Algorithm)

Set v0, with xo > 0 and z0 > 0;
Set k = 0, i = 0 and ik = 0;
while not converged do

Set /p = lk;
' hile IIfp(vi,)Ii > 6 p do

Find vi+l such that

Ilfp(vi+,2)1 2 < jjfP(v,,y)jj 2 and xi+1 > 0;
Set i = i + 1;

end do;
Set k = k + 1, ik = i;

end do

4.1. Convergence

The convergence proof for this algorithm is similar to that for Algorithm PFP in
that it is necessary to show that for each barrier subproblem, Jp remains bounded
and has a bounded condition number. However, in Algorithm PFP the iterates lie
in So, whereas here it is not obvious that the iterates {zx} lie in any compact set.
We establish this fact in the next lemma and then show that {vi) lies in a compact
set.

Lemma 4.1. Let r, denote a positive constant. If the feasible region So is compact,
then so is the set

SA = { Ix > 0, IIAx - bl < rr}.

Proof. Since SA is closed, it only remains to be shown that SA is bounded. Since the
elements of w are nonnegative, it follows that SA will be compact if eTw is bounded.
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Let w be any member of SA and let r, denote the residual Aw - b associated with
w. Let eo be a solution of the linear program

maximize erwWE n (4.4)
subject to Aw = b + rw, w > O.

It follows that SA is compact if eTw* is bounded.
Let R denote a full-rank matrix whose columns form a basis for the range space

of AT. It follows that w may be expressed as

w = NWN + RwR. (4.5)

In particular, e* = Nw* + Re, and substitution in (4.4) gives

ARw* = b + r,.

Since IHrwJI < r, and AR has full column rank, this equation implies that II*He is
bounded. Equation (4.5) now implies that w* is a solution of

maximize eTwN
WN (4.6)

subject to Nw., > -Rw*.

Assume that the linear program (4.6) is unbounded. Then there must exist a
nontrivial feasible direction u such that Nu > 0. If x is any point in So, then
x + 7 Nu must also be in So for any positive -/, which contradicts the compactness
of So. Consequently, the solution of (4.6) is bounded and Sa is compact. I

Lemma 4.2. Let r0 denote the residual ro = Axo - b, with xo > 0. Define the set

Sr = {(z,x,y) I x > 0, Ax - b = yro }

for eome 7, 0 < 7 < 1, and the level set

r(r1 ,i) = {(z,x,y) I IIfP(z,x,y)lI < i7}.

Then the set S = Sr n F(r1 ,1 ) is compact.

Proof. Throughout this proof we shall assume that v is a vector in S. From the
definition of Sr, we have IlAx - b]l < liroll and it follows from Lemma 4.1 that the x-
components of v are bounded. It remains to be shown that the y and z components
of v are bounded. Note that the components of both f and S are bounded since
they are components of the bounded vector fp.

Consider the equations f = z - ipX-'e of (4.1). Premultiplying f by x7 and
using the fact that both x and f are bounded, we see that there exists a constant
r, such that

xTz = xTf + n < r1. (4.7)
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Also, since x > 0, z1 > 1,> -T2, (4.8)

for some positive constant r 2 .

If XT is now applied to the second equation of (4.1), = c - ATy - z, we obtain

xTi = xTc- xTATy - xTz = xTc (bT+ rT)y _ xTz.

Simple rearrangement gives

(bT-+ rT)y = xTf + xTz - xTc, (4.9)

and it follows from (4.7) and the bounds on ] and x that

- (bT+ rT)y < 73. (4.10)

Similarly, using x = x0 in (4.9) gives

(bT+ roT)y - _xo] - XTz + XTc -Xo - Z(Xo)jzj + x oc,

where J_ is the set of indices of the negative elements of z (recall that the elements
of xO are positive). It follows from (4.8) that

(bT+ rT)y < r4. (4.11)

Using (4.10) and the assumption that r = -7ro for some 0 < y < 1 gives
- (bT+ 7rT)y < r3. (4.12)

Combining (4.11) and (4.12) gives

_bTy < T3 + 7T4 < r5.1-7

It now remains to bound the term *Tz. Using (4.9) with x = x* gives

X*T z = X *T*-C _T - by.

Since xi > 0 and IIx*II is bounded (see Lemma 2.1), all the terms on the right-hand
side of this expression are bounded, with x*Tz < r 6 for some positive constant 7"6.
Lemma 2.1 also implies the existence of positive constants ax and rx such that
ax :_ x < Tx. Clearly jjzjI[ is bounded, with

zj < (-6 + nrxr2)/ox.

Since A has full row rank, the bounds on 11f11 and Ilzil in the equation = c-ATy - z
imply that Ilyll is bounded, as required. I

Lemma 4.3. If v E S then Jp is bounded and has a bounded condition number.
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Proof. It is enough to show that xj is bounded away from zero if v E S. We have
from (4.1) that zi - Ij = /xj. Hence

izjl + 11fl -- lx/j or equivalently xj > ZIz~I + 11111"

It follows from Lemma 4.2 that there exists a positive constant rz such that IzjI < rZ
for all v E S, and by assumption, 1fl1 -< rf. Hence, xj >_ p/(rz + 7f) > 0.

From Lemma 4.1, x is uniformly boinded above. Since xj is bounded away from
zero, Jp is bounded and the condition number of Jp is bounded. I

The proof of the following theorem is similar to that for Theorem 2.1.

Theorem 4.1. Let {vj} be the sequence generated by Newton's method applied to
the equations (4.1). Then limi-.o livi - v*(/z)il = 0. 1

It follows that Newton's method generates a point that satisfies the condition

jIfp(vi,A,)lI _< 411 in a finite number of iterations.

5. Summary of Primal Methods

In all the algorithms considered so far (excluding the artificial-variable method of
Section 3.1), the search directions for x and y are the same as those given by (4.2).
The steplength a may be chosen to reduce one of the following functions:

(i) M(x,p) = B(xq) + pliAx - bilt (search in x-space).

(ii) 1Ic - X-le - ATyii2 + IlAx - b1I 2 (search in x and y-space).

(iii) i1c - z - ATyii 2 + 1lz - ILX-'e11 2 + IlAx - bit 2 (search in x, y and z-space).

The only additional restriction on a is the requirement that x + aAx > 0. In all
cases, approximations in the x, y and z-space may be generated even though they
are necessary only in (iii). Thus, all three methods may be viewed as primal-dual
algorithms.

If some steplength other than a is taken along Az and Ay, a sequence of auxiliary
y and z-values can be generated that approximate y* and z. For this sequence, a
different step az in the y and z-space is needed to maintain z > 0. Since az is not
usually equal to a, a. dual feasible point may be found before a primal feasible point
(or vice versa). Provided that the step taken in the y-space is also az, once a dual
feasible point is found, 1l subsequent approximations will be dual feasible.

One advantage of (fi) and (iii) is that it is not necessary to compute logarithms.
Moreover, it is not necessary to define a parameter p that balances feasibility and
optimality, although it may be advantageous to weight the norms occurring in (ii)
and (iii).
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6. Dual Methods

The dual of the linear program (1.1) may be written as

minimize - bTy
Y1 Z (6.1)

subject to c-ATy-z=O, z>O.

The dual barrier subproblem is

minimize - bTy - z i(.n zj
yE m ,ZE" (6.2)

subject to c-ATy-z=O.

Newton's method applied to this problem defines the y-space search direction from
a system similar to (2.2). (The right-hand side is changed and H = (1/p)Z 2 , where
Z = diag(zj).) Given an initial feasible point (yo, zo) we may define a dual algorithm
DFP analogous to PFP.

Similarly, we may construct an algorithm based upon the optimality conditions
for (6.2):

x -pZ-le = 0,

c-ATy-z = 0, (6.3)

Ax - b = 0.

As noted by Megiddo [Meg89], the solution of these equations is identical to the
solution of (4.1). Newton's method applied to (6.3) solves the linear system JDAV =

-fD, where

x - pZ1( /,Z-2 1I
fD(z,Xy) c- ATy- z and JD= -I 0 A

r Ax - b 0 A 0

The resulting algorithm, DPD, is identical to PPD except that Jp and fp are re-
placed by JD and fD, and the z-variables are restricted during the linesearch instead
of the x-variables. It can be shown that like Jp, the matrix JD remains bounded and
has a bounded condition number. Moreover, a step satisfying the Goldstein-Armijo
conditions must exist, since JIfDII would be infinitely large if any element of z were
zero. Note that whenever every component of z is positive, Av is a descent direction
for IIfnII2.

As in algorithm PPD, an auxiliary sequence can be generated by allowing the
the primal and dual steplengths to be different. In this case, the sequence would be
a strictly positive approximation to x*.

Theorem 6.1. Let {vi} be the sequence generated by Newton's method applied to
the equations (6.3). Then limi-.o IIvi - v*(,i)ll = 0.
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Proof. Let v = (z,x, -y). It follows immediately from z > 0 and

-pZ- 1 e + x = j

that xi >_ -r 1 > -oo and Lemma 4.1 implies that x lies in a compact set. An
identical argument to that used in Lemma 4.2 shows that v also lies in a compact
set. It follows immediately that IIZ-111 is bounded. Hence JD is bounded and has a
bounded condition number. The required result follows from an identical argument
to that of Theorem 2.1. I

7. Primal-Dual Algorithms

7.1. A Primal-Dual Method

Algorithms PPD and DPD both generate a sequence of approximations to 1*(IL).
In addition, v*(p) solves the system of equations fpD(Z,X, y) 0, where

f Xz - p

fPD(Z,X,y) = = c- ATy - z (7.1)
r Ax - b

Newton's method for these nonlinear equations gives the linear system

JPDAv = -fPD, where JPD = -1 0 AT , (7.2)
0 A 0

which has been used by Lustig, Marsten and Shanno [LMS89,LMS90], Mehrotra
[MehgO], and Gill et al. [GMPS91] (see also Lustig [Lus88]). Methods based on
the solution of (7.2) are usually referred to as primal-dual algorithms because both
x and z are maintained to be positive. It must be stressed that this terminology
does not imply any direct connection between (7.2) and the primal-dual form of
LP. If the latter is transformed using a barrier function, the resulting optimality
conditions involve six sets of variables and two independent systems of equations
that are identical to (4.1) and (6.3).

Unlike Jp and JD, JPD is independent ofu1. If a is chosen to maintain sufficient

positivity in both x and z, JPD will be a bounded matrix with a bounded condition
number. A key difference with th.est- equations is that it is no longer obvious that
if a is chosen to satisfy the Goldstein-Armijo conditions then a suitable step that
maintains both z > 0 and x > 0 exists. We therefore propose an algorithm that
takes a different step in the x-space than in the y and z-space and uses A'f(x,p)
as a merit function rather than Ijfp[I2 . If oz, 7y and rz are preassigned positive
constants, let Sy and Sz be the sets

Sy-{Y=fy lyllr and Sz={z1O<azez<rze}.
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Algorithm PD (Model Primal-Dual Algorithm)

Set vo, with xo > 0, zo E Sz and yo E Sy;
Set k = 0, i = 0 and ik = 0;
while not converged do

Set ji = Ilk;
while JINTg(xi,jz)jI + irl > ,k/' do

Select any zj+j E Sz and yi+j E Sy;
Solve JPDAVi = -fpD for Axi;
Find xj+1 = xi + aiAxi such that
M(xi+1,p) < M(xi,p) and xi+i > 0;
Set i = i+ 1;

end do;
Set k = k + 1, i k = i;

end do

The convergence of Algorithm PD follows directly if it can be shown that (7.2)
generates a sequence {x} converging to x*(z).

Given positive constants Tr Ind TM, define the level set

9 = {x I IlAx - b!I 5r,, M(x,p) < 7"M}.

Similar arguments used to prove Lemma 4.1 show that S is compact.

Lemma 7.1. If x E S then there exists a positive ax, independent of x, such that
xi >_ axe. I

Lemma 7.2. Given positive constants r,, ry, rx and rz, assume that x, y and z
satisfy IlrIl = ljAx - bll - rr, Ilyll < ry, 0 < x < rxe and 0 < z < rze. Then there
exist constants p, y (y > 0) and / (/P > 1) such that

AxTVM(x,p) <_ -IIN~"ll 2 - 1i1rill,

where Ax is defined by (7.2).

Proof. If the system

(ZX - 1 A T ) AX) -( LX - l e b - (7.3)

is solved for Ax and Ay, it follows from the assumptions that IAxII is bounded.
Observe that the right-hand side of (7.3) is identical to that of (2.2). It follows

that
INAxN = -NT(g + ZX-'ATAxA), (7.4)

where g = VB(xIt), HN = NTZX-lN, Ax = NAXN + ATAXA, and

AATAxA = -r. (7.5)
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Consider now the merit function M(x,p) given in Section 3. By definition we
have

AxTVM(x,p) = AXTNT(g + pATE) + AxT A(g + pATE),

where E is a vector whose elements are one in magnitude and whose signs are the
same as r. Define u =_ (AAT)- 1 A(I - X-1ZNII-lNT)g. Substituting for AxN
from (7.4) and Axa from (7.5) gives

AxTVM(x, p) = -gTNH'lNTg - rTu - prTE,

_< -IIIN Tg2 -/311r11i,

where -' > 0 is the reciprocal of the largest eigenvalue of 11N,/3 _ 1, and p is chosen
such that

p = max(1 - rTuM, 0),rTE

with um the vector u evaluated at the point x E S for which rTu has its minimum
value. I

Lemma 7.3. If Ax is defined by (7.2), there exist positive a and ax such that the

Goldstein-Armijo conditions are satisfied with x + aAx > axe.

Proof. If aM is the largest feasible step along Ax, then M(x + aMAx, p) is infinite

and it follows that there exists a positive number a* that solves the problem of
minc, M(x + aAx, p) subject to x + aAx > 0. Hence, a strictly feasible point exists
for which the Goldstein-Armijo conditions are satisfied. I

Lemma 7.4. Let az, r, and r7 be preassigned positive constants. Consider sc-
qunces {zi} and {yi} such that aze < zi < rze and HYill < r. Let {xi} denote

the sequence x,+, = xi + a, Ax, and xo > 0, where Ax, is defined by (7.1) and
ai satisfies the Goldstein-Armijo conditions on M(x,p) with the requirement thai
xi+l > 0. If p is sufficiently large (but bounded) then limi-.. xi = x*().

Proof. Since {xi} lies in a compact set, it follows that x, is bounded for all i.
Moreover, since xi lies in S, there exists a positive ax such that x, > axe for all i.
Every element of the sequence {x,} satisfies the assumptions of Lemma 7.2 and we
have

Ax7'1AM(xi,p) _ -711JNTg(xi)ll 2 - 0]lr(x,)ll,,

where -y > 0 and 3 _> 1. It follows from Lemma 7.2 that {M(x,,p)} is a strictly

monotonically decreasing sequence. Since {x,} E 5, it follows that {AI(x,,p)} miul.1
converge and the Goldstein-Armijo conditions give

lim aiAX7 VM(xi,p) = Jim ai(-yJJN7g(x,)Il2 + 0I1r(x,)I 1) = 0.
1T00 t 00

Trhe proof now follows a similar argument to that given in Lemmna 2. 1.
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Lemma 7.5. If the assumptions and definitions of Lemma 7.4 hold then

Jim yi + Ayi = Y*(p) and lim zi + Azi = z*(p).
t--o i--o

Proof. It follows from (7.3) and the optimality conditions of (2.1) that

lim yj + Ayi = y*() and lim Axi = 0.
l-.-00 i---00

From (7.2) we have Zi(xi + Axi) = -XiAzi + tie. Since limi-..o xi = x*(jI) and
lim-. 00 Axi = 0, we have

lim zi + Azi = IzX*()-le = z*(j,),

where X*(u) = diag((x*(1i))). I

The above result shows that even for quite arbitrary choices of {zi} and {yij,
approximations to y*(p) and z*(yi) may be obtained.

In practice, certain choices of zi and yi lead to more efficient algorithms. The
primal algorithm of Section 3.2 using the merit function M(x,p) may be viewed as
being equivalent to Algorithm PD with zi chosen as IiXrle and yi+l = yi + aiAyi.
Since IIAx - bill is implicitly bounded by the linesearch, Lemma 4.1 implies that xi
is bounded. It follows that each (zi)j is bounded away from zero, and zi E Sz for
suitably small az.

Alternatively, values of y and z may be determined from a linesearch. A steplength
0, in the z and y-space can be taken as an approximate solution of the univariate
problem

minimize IIfPD(Zi + OAzi, Xi, Y, + OAyi)II2

e

subject to zi + OAzi > rllX4+\e, 0 < 1,

where 7 is some preassigned constant in (0, 1].

7.2. Another Primal-Dual Algorithm

A second primal-dual algorithm can be derived by observing that v*(Il) solves the
system of equations fPDD(z,x,y) = 0, where

f oo (Z, X,Y) = c - Ary - z (7.6)
r Ax - b

Newton's method for these equations gives the linear syctem JPDDAV = -fPDD,

where

JPDD = -I 0 AT

0 A 0
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Unlike the primal-dual method of Section 7.1, there always exists a steplength that
satisfies both the Goldstein-Armijo conditions for IIfPDD 112 and the restrictions x +
acAx > 0 and z + aAz > 0.

The proof of the following theorem is similar to that of Theorem 6.1.

Theorem 7.1. Let {vi} be the sequence generated by Newton's method applied to
the equations (7.6). Then limi.. Ilvi - v*(Is)ll = 0. 1

At first sight, the Jac-' ian JPDD looks more complicated than JPD. Ilowevr,

the KKT matrix for the system is identical to that for the primal-dual method of
Section 7.1. We have

/ 12
ZX-1  AT 'dX c-2z+IZ x - ATY 7.7= -y) (7.7)A ) ( - ,:Ay A x - b

Herce, the search direction for the PD algorithm of Section 7.1 may be computed
with little additional effort. A better direction can perhaps be constructed from the
two search directions. The precise combination can be made dynamic and need be
specified only after both directions are known.

The right-hand side of (7.7) is identical to the right-hand side for the KKT system
of the dual algorithm. This implies that this algorithm is related to the dual barrier
algorithm in the same way that the primal-dual algorithm of Section 7.1 is related
to the primal. For example, a merit function based on the dual barrier function
and dual constraint violations would enable the calculation of different steps in the
primal and dual variables. In this case it is the step in the primal variables that
may be chosen arbitrarily.

Note that any linear combination of the systems of equations (7.6), (7.1), (4.1)
and (6.3) also leads to a similar algorithm. In particular, any linear Combination
that includes the primal-dual equations (7.6) (no matter how tiny a proportion) has
the property that a suitable steplength exists for which x and z are positive.

8. The Treatment of Free Variables

If there are no bounds on a particular variable, no difficulty arises provided zAv
is computed directly from the KKT system. However, a common approach for
(oinputing Av is first to compute Ay using the Schur complement of the leading
diagonal matrix. If the leading diagonal '. singular, such an approach cannot be
used. (We may always use the Schur complement of the nonjingular portion of the
diagonal matrix but this is no longer a definite system.)

We shall consider just the primal algorithm, but the approach suggested here
may be used in all the methods. For simplicity, assume that x, is the only free
variable. In place of (f1), = z, -- ltIxr we now have (fp)r = Zr, with z(tt) = 0. As

long as the explicit KKT system is solved, the effect of this equation on the Jacobian
is inconseluential. tlowever, in place of jiX - 2 we now have D, where d, = 0 and
dj = tx for j 0 r. Hence D is singular and its Schur complement does not exist.
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A means of circumventing this difficulty is to replace the equation zr = 0 by an
equation that ensures zr -+ 0 as it -- 0. For example, we could use

eXrzr = / or Zr +PXr = 0,

which give dr = Zr and dr = I respectively. In the first example, z*(4t) = Ile

and we may keep zr > a, > 0. It follows that D is nonsingular and its Schur
complement exists. In the second example, since zr does not appear in the Jacobian,
its sign or magnitude is not important. Likewise, the nonsingularity of Jp no longer
depends on x,, so there is no need to restrict the steplength for this variable.

9. Further Comments

A common practice in interior-point implementations is to define the steplength as
some fixed percentage of the maximum feasible step. By contrast, all the algorithms
described in this paper require some form of linesearch for the steplength. In practice
this requirement has a minimal effect upon computation time, given the work needed
to compute the search direction. Moreover, if r is close to one and n is close to
zero, almost any step is likely to satisfy the Goldstein-Armijo conditions because all
the linesearch functions are convex and increase rapidly near the boundary of the
feasible region. In practice we have observed that the need to perform a linesearch
arises, aly when there is significant numerical error in the search drection.

Currently the most efficient implementations use a predictor-corrector method
to define the search direction (e.g. [LMS90,Meh90]). Such a strategy may be incor-
porated in the algorithms discussed here. The important point is to be able to fall
back on a guaranteed method should the predictor-corrector direction fail to be a
suitable descent direction for the merit function. A similar view was adopted by
Mehrotra [Meh90].

It has not been our intent to compare the various algorithms in terms of perfor-
mance. All the primal-dual algorithms have very similar theoretical properties, but
only the primal-dual algorithm of Section 7.1 has been used in the principal known
implementations [LMS89,LMS90,Meh9O,GMPS91]. The key system of equations is
"less nonlinear" than for the other three variations. Even so, in the neighborhood of
the solution, the Jacobian behaves almost identically to the Jacobians of tile other
systems (as does the KKT matrix). It is not immediately apparent that this method
is inherently superior to the others.

It may be that the best method is dependent on how the linear systems are
solved. For example, all the methods may be implemented by solving systems of
the form ADATdy = u, where D is either X 2, Z - 2 or XZ "'l . Suppose these
systems are solved using a conjugate gradient method in which a preconditioner is
based on periodically forming the Cholesky factors of ADAT. The systems using
D = X 2 should yield better preconditioners as the iterates converge because the
ratio of consecutive values of any significant diagonal of D converges to one. When
D = XZ - ' or D = Z - 2 , the significant diagonals correspond to the small elements
of z. It is not obvious that the ratio of consecutive values of any such diagonal will
behave as smoothly.
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Our analysis is directed at the linear programming problem. However, extending
the results to a smooth convex objective function is quite straightforward. The more
challenging problem is to extend the results to nonconvex problems.
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